Earth's Climate: Past, Present and Future – concerns and solutions Paul Belanger, Ph.D. Geologist/Paleoclimatologist week 1: 3/30/2016

- Introductions
- Key principles of climate change
- The difference between weather and climate
- Climate system: feedbacks, cycles and self-regulation (climate, not government)
- What determines Earth's climate

Intro:

- Intro:
 - Yourselves what brought you here
 - my background, ramblings
 - web page
 http://denverclimatestudygroup.com/
 (OLLI tab) and Facebook
 - CV (about tab)
- Logistics
- Paula Morgan: classroom assistant, liaison to me/OLLI

Intro:

Going to:

- web page:
 - http://denverclimatestudygroup.com/
- Facebook too blog: https://www.facebook.com/denverclimate studygroup/?fref=ts

"In this age of specialization, men who thoroughly know one field are often incompetent to discuss another.

. . You must not fool yourself--and you are the easiest person to fool"

Richard Feynman, 1974

My comment:

We've become a country of selfproclaimed experts on everything.

Three books to consider:

- Simple succinct Summary:
 - What We Know About Climate Change (Boston Review Books) by Kerry Emanuel (Nov 30, 2012)
- Intermediate Level Book:
 - Earth: The Operators' Manual by Richard B. Alley (Apr 18, 2011)
 - http://earththeoperatorsmanual.com/
- More comprehensive book:

Experimenting on a Small Planet: A Scholarly Entertainment by William W. Hay (Dec 14, 2012)

Another book to consider:

• Economics:

- Climate Shock; the economic consequence of a hotter planet
- by Gernot Wagner & Martin Weitzman

- If you had a 10 percent chance of having a fatal car accident, you'd take necessary precautions. If your finances had a 10 percent chance of suffering a severe loss, you'd reevaluate your assets. So if we know the world is warming and there's a 10 percent chance this might eventually lead to a catastrophe beyond anything we could imagine, why aren't we doing more about climate change right now? We insure our lives against an uncertain future--why not our planet?
- In Climate Shock, Gernot Wagner and Martin Weitzman explore in lively, clear terms the likely repercussions of a hotter planet, drawing on and expanding from work previously unavailable to general audiences.

We need a Paradigm shift

- Which led to my email quote from Kerry Emanuel and the need for a social paradigm shift:
- "...there are few, if any, historical examples of civilizations consciously making sacrifices on behalf of descendants two or more generations removed"
- Recent discussions for a new Presidential candidate: Secretary of the future

VIDEO - what is climate

- https://www.futurelearn.com/courses/climate
 -change-challenges-and-solutions/todo/123
- And go to 1.4

How we receive and transmit energy in the form of light

 Visible vs. Infrared/longer wave – a function of "black body" temperature: instead of glass keeping the heat in it's the gas properties keeping the heat of infrared in; blanket effect.

What determines Earth's climate

INTRODUCTION: Definitions:

• First order Forcings: EXTERNAL Influences (3):

SOLAR input:

0.9% less 100 My ago

Atmospheric Opacity

(gases that absorb radiation in or out)

Albedo

(refletivity:30-85%)

- Feedbacks: INTERNAL dynamics and responses
 - •e.g. higher water vapor in atm. due to heating of atm

THE SUN'S ROLE IS MINIMIZING

GREENHOUSE GASES (GHGs)

- Water H₂O the amount is a feedback of temperature held in by the "blanket" of other GHGs
- Carbon dioxide CO₂
- Methane CH₄
- Ozone O_3
- Nitrous oxide- N₂O
- others

The CO, greenhouse gas effect is concentrated the inest patient and the polar regions!!!

Particularly in the Agetic house effect is controlled by temperature -Saturation doubles Sand other Greenhouse gases are evenly distributed throughout the As a result It is atmosphere concentrated in the lower atmosphere of the tropics

Table 1	Specific humidit	y of a kilogram of air (at average sea le	vel pressure)
Tuoic T	opecine numum	y of a knowlant of an (at a verage sea re	ver pressure,

Temp. (°F)	Grams of water vapor per kg of air (g/kg)
-40	0.1
-31	0.2
-22	0.3
-13	0.51
-4	0.75
14	1.8
32	3.8
41	5
50	(7.8)
98	10
68	15
11	
86	27.7
95	33
104	49.8
	-40 -31 -22 -13 -4 14 32 41 50 59 68 77 86

What is the volume of 1 kg of air?

Answer: 0.8562 m³

(95 cm x 95 cm x 95 cm)

 $10^{\circ}\text{C} = 20^{\circ}\text{C} = 30^{\circ}\text{C} = 40^{\circ}\text{C} = (50^{\circ}\text{F}) (68^{\circ}\text{F}) (86^{\circ}\text{F}) (104^{\circ}\text{F})$ 7.8 cc 15 cc 27.7 cc 49.8 cc

How GHGs Blanket the Earth

- Blanket Earth:
- http://climate.nasa.gov/causes/
- https://www.youtube.com/watch?v=aqkGoCgl
 p U&feature=youtu.be
- https://www.youtube.com/watch?v=we8VXw a83FQ

3: EMISSIONS FROM HUMAN ACTIVITIES LARGELY TO BLAME

- 40% increase in CO₂
- Dead carbon altering atmospheric C¹⁴
- That Carbon is more negative/enriched in C¹²

GLOBAL WARMING CONCERNS Radiative Forcing Components

Incoming Solar irradiance: 342 W/m²

IPCC, 2007

1: THE CLIMATE IS WARMING

Drivers; aka forcings, i.e. causes

The Atlantic Thermohaline Circulation

- A key Element of the Global Oceanic Circulation -

Schematic diagram of the global ocean circulation pathways, the 'conveyer' belt (after W. Broecker, modified by E. Maier-Reimer).

AV/D3/99-2

Simulations of the 20th century: Time

NCAR

All forcings

Natural only

Meehl et al. 2004

5: SURFACE TO STRATOSPHERE CHANGES

Where is global warming going?

John Cook, from IGPP 2007 data; ~93% to oceans continues (NOAA/NODC, 2012)

Change in heat content, 1958-2011

(NOAA 2012 data, Nuccitelli et al. 2012 plot)

Box 3.1, Figure 1 | Plot of energy accumulation in ZJ (1 ZI = 10th J) withi

12. ARCTIC ICE vs. ANTARCTIC SEA ICE

- Ans. More moisture in air around Antarctica (AA) to nucleate sea ice
- Despite > AA is does not compensate for Arctic loss

2015

http://nsidc.org/arcticseaicenews/2015/

http://nsidc.org/arcticseaicenews/2015/

For more see: http://www.skepticalscience.com/melting-ice-global-warming.htm

Blue: Sea level change from tide-gauge data (*Church J.A. and White N.J.*, *Geophys. Res. Lett.* 2006; 33: L01602) Red: Univ. Colorado sea level analyses in satellite era (http://www.columbia.edu/~mhs119/SeaLevel/).

Loaded Climate Dice: global warming is increasing extreme weather events.

Extreme summer heat anomalies now cover about 10% of land area, up from 0.2%.

This is based on observations, not models.

Frequency of occurrence (vertical axis) of local June-July-August temperature anomalies (relative to 1951-1980 mean) for Northern Hemisphere land in units of local standard deviation (horizontal axis). Temperature anomalies in the period 1951-1980 match closely the normal distribution ("bell curve", shown in green), which is used to define cold (blue), typical (white) and hot (red) seasons, each with probability 33.3%. The distribution of anomalies has shifted to the right as a consequence of the global warming of the past three decades such that cool summers now cover only half of one side of a six-sided die, white covers one side, red covers four sides, and an extremely hot (red-brown) anomaly covers half of one side. *Source: Hansen, J., Sato, M., and Ruedy, R., Proc. Natl. Acad. Sci., 2012.*

