FRACKING FORUM: Risks and Rewards

Monday October 6th, 2014

Paul E. Belanger, Ph.D.

Moderator

http://denverclimatestudygroup.com/ - fracking tab

PEBelanger@glassdesignresources.com

It's about Energy and our Future

Or live – i.e. NIMBY
Or who you work for
Or what party you affiliate yourself
Or whether your retired or not
Or your age
Or other factors

http://img.deseretnews.com/images/top/main/26657/26657.jpg

There are Energy Impacts:

Coal:

- 2x CO2
- Particulates
- Mercury/other
- Water contamination at waste sites
- Fugitive methane at mining sites – never discussed?

Natural Gas:

- Earthquakes from injection wells
- Water use
- Water table contamination?
- Fugitive methane
- Proximity of drilling operations

Wind/solar:

- Areal footprint
- Bird kills
- Reliability issues

What is Colorado doing about it?

- Colorado is one of 4 states (WY, CA, OH) regulating/reducing emissions
- Colorado mandates operators address all wells within 1500' of well-path
- Colorado mandates operators address 4 water wells within ½ mile of newly drilled well

Lest we forget: CO2 is still going up

...and so are temperatures

What about Methane?

How Much Methane do We Need to Reduce?

U.S. Energy Consumption

Note: Sum of components may not equal 100% due to independent rounding.

Source: U.S. Energy Information Administration, *Annual Energy Review 2009*, Table 1.3, Primary Energy Consumption by Energy Source, 1949-2009 (August 2010).

U.S. Energy Consumption

At issue

Resolving our energy future and climate issues involves:

- Economic issues
- Reducing emissions
 - But also mitigation (Biochar/BECCS)
- Educating ourselves
 - About energy
 - About climate
- Building trust
- Dialogue

At issue

...the low priority given by the public

March 2014 Gallup poll – hard pressed to make changes when climate change not of great concern

	Great deal	Fair amount	A little/ not at all
	%	%	%
The economy	59	29	11
Federal spending and the budget deficit	58	22	20
The availability and affordability of healthcare	57	20	23
Unemployment	49	28	23
The size and power of the federal government	48	20	31
The Social Security system	46	29	24
Hunger and homelessness	43	33	23
Crime and violence	39	31	29
The possibility of future terrorist attacks in the U.S.	39	24	37
The availability and affordability of energy	37	30	33
Drug use	34	29	37
Illegal immigration	33	24	42
The quality of the environment	31	35	34
Climate change	24	25	51
Race relations	17	26	56

Question asked of a half sample March 6-9, 2014

GALLUP'

Views on Global warming by whether you're a Republican, Democrat or Independent

THANK YOU

With that our speakers:

John Harpole

Harv Teitelbaum

Paul E. Belanger, Ph.D.

PEBelanger@glassdesignresources.com

http://denverclimatestudygroup.com/ - fracking tab

http://denverclimatestudygroup.com/

Click on Fracking – excerpts displayed below

EXTRAS #1

For your information as well as for answering questions from the audience

Fossil-fuel phase-out:

http://en.wikipedia.org/wiki/Fossilfuel_phase-out

California Electrical Generation

http://oceanlink.island.net/ONews/ONews7/m ethane.html

U.S. electricity net generation trillion kilowatthours

Source: EIA, Annual Energy Outlook 2012

EXTRAS #2

Variously related slides

Drivers: aka forcings, i.e. causes

Where's the heat going? Answer – the ocean

Simulations of the 20th century: Time

NCAR

All forcings

Natural only

Meehl et al. 2004

Global Temperature Change, 1980 - 2012

Climate Changes from Ocean Sediment Cores, since 5 Ma. Milankovitch Cycles

When CO₂ levels get below ~400-600 ppm Orbital parameters become more important than CO₂

Correcting for El Niño and La Niña Influences Shows the Global Warming Trend More Clearly

How to Abuse Statistics: Choose a Short Time

Interval and Ignore the Long-Term Trend

How to Abuse Statistics: Choose a Short Time Interval and Ignore the Long-Term Trend

How to Abuse Statistics: Choose a Short Time Interval and Ignore the Long-Term Trend

http://www.eia.gov/environment/emissions/g hg_report/ghg_overview.cfm

EXTRAS #3

From Drew Nelson: Natural gas symposium 9/25/2014

http://denverclimatestudygroup.com/wp-content/uploads/2014/07/Drew-Nelson-slides20140925.pdf

Widely Acknowledged The Oil and Gas Boom Has Clear Advantages...

- Economic development
- Increased energy security
- Less air pollution
- Fewer greenhouse gases (GHG) from combustion than coal.

... IF done the right way.

And Potential Risks:

- Ground and Surface water contamination
- Induced Earthquakes injecting waste water
- Increased GHG emissions
- Local impacts: noise, truck traffic, lights, etc.

....if NOT done correctly

NEED to:

- Reduce risks
- Reduce emissions
- Rebuild public trust

It's in everyone's interest to minimize risks and emissons

Even 1.3% Leakage is Too Much...

- Annual GHGs of:
 - 117 million cars or
 - 146 coal power plants of ~615 coal plants
- Gas carried by 127 LNG tankers.
- \$1.7-\$6.2 Billion of lost revenue

Comment: we've reduced the output of about 25% of our coal plants but offset that with about and equivalent increase or worse in equivalent GHG emissions

Drew Nelson; edf.org

Urgency of climate problem requires solutions that slow the rate *and* amount of warming.

Reducing methane reduces the rate of warming.

Industry can cost-effectively reduce methane, but not everybody is doing so.

Common-sense regulations can and should be implemented.

Reductions will provide climate and health benefits.

EXTRAS #4 - other

WG1; AR5 chapter 8

http://www.ipcc.ch/report/ar5/wg1/#.UuAsbxDn9hE

Table 8.7 | GWP and GTP with and without inclusion of climate—carbon feedbacks (cc fb) in response to emissions of the indicated non-CO2 gases (climate-carbon feedbacks in response to the reference gas CO2 are always included).

	Lifetime (years)		GWP ₂₀	GWP ₁₀₀	GTP ₂₀	GTP ₁₀₀
CH ₄ ^b	12.42	No cc fb	84	28	67	4
		With cc fb	86	34	70	11
HFC-134a	13.4	No cc fb	3710	1300	3050	201
		With cc fb	3790	1550	3170	530
CFC-11	45.0	No cc fb	6900	4660	6890	2340
		With cc fb	7020	5350	7080	3490
N ₂ O	121.0°	No cc fb	264	265	277	234
		With cc fb	268	298	284	297
CF ₄	50,000.0	No cc fb	4880	6630	5270	8040
	(4)	With cc fb	4950	7350	5400	9560

. .

Table 8.7 | GWP and GTP with and without inclusion of climate—carbon feedbacks (cc fb) in response to emissions of the indicated non-CO2 gases (climate-carbon feedbacks in response to the reference gas CO2 are always included).

	Lifetime (years)		GWP ₂₀	GWP ₁₀₀
CH ₄ b	12.4°	No cc fb	84	28
		With cc fb	86	34
HFC-134a	13.4	No cc fb	3710	1300
		With cc fb	3790	1550
CFC-11	45.0	No cc fb	6900	4660
		With cc fb	7020	5350
N ₂ O	121.0ª	No cc fb	264	265
		With cc fb	268	298
CF ₄	50,000.0	No cc fb	4880	6630
		With cc fb	4950	7350

Table 8.7 | GWP and GTP with and without inclusion of climate—carbon feedbacks (cc fb) in response to emissions of the indicated non-CO2 gases (climate-carbon feedbacks in response to the reference gas CO2 are always included).

	Lifetime (years)	GTP ₂₀	GTP ₁₀₀
CH ₄ b	12.4°	67	4
		70	-11
HFC-134a	13.4	3050	201
CONFINITERFAMOL		3170	530
CFC-11	45.0	6890	2340
ST. PER		7080	3490
N ₂ O	121.0°	277	234
		284	297
CF ₄	50,000.0	5270	8040
(. (1)		5400	9560

Methane AND CO2

About **25 percent of the man-made warming** we are experiencing today is caused by methane.

